TAOS Project

An Occultation Survey of the Outer Solar System

Zhi-Wei Zhang and TAOS team

Academia Sinica Institute of Astronomy and Astrophysics, Taiwan

http://taos.asiaa.sinica.edu.tw

2012-09-03 @ Ensenada

Cumulative Luminosity Function

Counting Kuiper Belt objects using occultations

36723-K. Bel 1-001

Shadow of 1-km Object

Diffraction Lightcurve of 1-km Object

b is impact parameter in km

the duration is about 0.2 s and the flux drop is about 20%

t offset represents different start time

To Achieve 5 Hz --- Zipper mode

the drawback of zipper mode is (1) stars can easily interfere with others, (2) higher sky background

Four 0.5-m Telescopes with F/1.9

Observation Scheduler

Open Dome after Sunset (elevation < 0) to cool down the telescope until elevation < -18 Select a TAOS field (close to the zenith) to get best image quality Slew and do Pointing Correction GRB to synchronize the pointing of all telescopes alert Take 3 stares and Start zipper mode zipper mode observation lasts 1.5 hr (27,000 for 5 Hz)

Stop KBO Observation when el. of Sun > -18 close dome until el. > 0

Data Reduction --- Aperture Photometry

Time

Photometry features: (1) optimal aperture size for the best SNR, (2) square aperture for minimizing the computing time.

Event Detection --- Rank Statistics

Event Detection --- Rank Statistics

 $Z = -\log (r_1 * r_2 * r_3 / N^3)$, e.g. N = 27,000 the probability of P(Z > z') can be easily computed. for small Z, the histogram approximately follows Gamma dist.

Summary of Data Runs

Summary of Data Runs

Start Date	2005 February	
End Date	2008 July	2011 September
Number of Data Runs	443	2,016
Total Exposure in star-hour	500,761	1,383,052
Number of Photometry Points (or Rank tuples)	8.516 × 10 ⁹	2.024 × 10 ¹⁰

Bianco et al. (2010) used 2005 to 2008 data This work is the whole data set (2005 to 2011)

Result

No statistically significant events found

Efficiency Test

1. implant an occultation event into a lightcurve set with a certain size of KBO

- 2. sizes of KBO in km: D = [0.5, 0.6, 0.7, 1.0, 1.3, 2.0, 3.0, 5.0, 8.0, 15, 30]
- 3. do the analysis again on this event implanted lightcurve set
- 4. count how many lightcurve sets with recovered events and then
- 5. sum those usable lightcurve sets up to derive the <u>effective solid angle</u>

$$\Omega_{e}(D) = \sum_{j} E_{j} v_{rel} h_{j}(D),$$

$$h \text{ is the cross section of KBO}$$

E * vrel

Effective Solid Angle

Upper Limit on the Size Distribution

TAOS 1.5 --- Frame Transfer Camera

<u>Good</u>: 10 Hz sampling rate, no zipper mode (e.g. lower sky background, limiting magnitude down to 14.5 mag, etc.)

Bad: FOV is one fourth of the original camera

Cumulative Luminosity Function

Thanks for listening

chen

TAOS II

Trans-Neptunian Automated Occultation Survey

TAOS 2 Design Goal --- A factor of 100

Higher quality site (a factor of 7)

- 250 observable nights per year

Higher signal-to-noise data (a factor of 10)

- larger aperture telescope (0.5 m to 1.3 m)
- better seeing (~0.6 arcsec)

Higher sample cadence (a factor of 1 to 10)

- 20 Hz sampling rate
- sensitive to smaller objects (model dependent)

San Pedro Martir Observatory

Dark Sky and Stable Seeing

Seeing data measured by a DIMM monitor on 2002

1.3 m F/4 by DFM Engineering

CMOS Image Sensors

1920 X 4608	1920 X 4608	
16u pixels	16u pixels	
1920 X 4608	1920 X 4608	
16u pixels	16u pixels	
1920 X 4608	1920 X 4608	
16u pixels	16u pixels	
1920 X 4608	1920 X 4608	
16u pixels	16u pixels	
1920 X 4608	1920 X 4608	
16u pixels	16u pixéls	
~16 deg		

A custom 1920 x 4608 CMOS imager from e2v technologies plc. Why do not use CCD? The circuit will be too complicated for 20 Hz readout (EM CCD may be doable).

Data Rates

- 100 Mpixel camera (3 of them) + 20 Hz readout
 = ~300 TB of raw image data per night
- sub-aperture readout (10 x 10 pixels)
 - reduce data rate to 3 TB per night, assume 10,000 stars monitored.
 (maybe it won't be too bad in 4 years later)

The TAOS II Schedule

Site preparation to begin in late 2011 weather monitors, enclosures, domes

Telescopes delivered throughout 2012 telescope #3 ready, telescope #1 primary mirror ready

Prototype camera late 2011/early 2012 camera development is the bottleneck

Completed system operation late 2013

The TAOS II Partners

Academia Sinica Institute of Astronomy and Astrophysics, Taiwan

Universidad Nacional Autónoma de México, México

Harvard-Smithsonian Center for Astrophysics, USA

Yonsei University, Korea

