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OverviewOverview
 We use simulated diffraction patterns produced by the trans-

Neptunian objects
 Our problem is to classify this type diffraction patterns.
 We extract three type of feature:

– statistical,
– differential operators
– evolved interest point detector. Then,

 We use Support Vector Machine (SVM) approach as our
classifier for occultation detections.

 For a set of 120 synthetic signals for the training process, 60
for the test stage, two classes of occultation and one with
pure noise, our learning algorithm correctly detected 96% of
the events.
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Suppose that I have a set of the synthetic diffraction
occultation pattern of an object in the Kuiper Belt.

 r is the object diameter; a is the earth distance, bj are
different  impact factors; m is the magnitude of the star;
e is the spectral type of the star and s is the sample rate.
Also we need to add some random noise such as



Learning occultationLearning occultation    algorithmalgorithm

Then, our problem consists to finding a set of n
independent features

 related with fk functions or relations, so that the set of n
features                                 are associated to one class
of occultation
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 We have 2 class of occultation and non occultation
signal (a pure noise signal).

Label Class: 1
Diameter: 1 Km
Distance: 43 AU
Magnitude: 7
Transverse vel.: 25.425 km/s
LightCurve sampling: 10.0 Hz

Label Class: 2
Diameter: 5 Km
Distance: 43 AU
Magnitude: 7
Transverse vel.: 25.425 km/s
LightCurve sampling: 10.0 Hz



Class 3: non eventClass 2Class 1



FeaturesFeatures
We are include 3 type of features

l Statistics
l Differentials and Gaussian blur
l Interest Point Operators according to Trujillo & Olague 2008

mean

variance

standard deviation



In the next feature we are compute the operator using a kernel
of 3 and 5 samples.

First derivative

Second derivative

Gaussian smooth
operators.



The next feature are interest points detector. We employ a nom
maximum suppression schema (NMS) and count the numbers of interest
point and its variance (var).  We compute for a kernel of 3 and 5 pixels



ResultsResults
 3 Classes
 40 signals in the training stage per class
  20 signals per class for test
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